Chapter 10 – Practical Implementation Guide
10.1 Overview
This chapter provides a step‑by‑step blueprint for building, deploying, and maintaining the AI‑powered security stack described in the book. It assumes a small security team (5–15 analysts) with basic DevOps skills.
10.2 Prerequisites
- Hardware – At least one GPU‑enabled VM (e.g., NVIDIA T4) and one general‑purpose VM.
- Software – Docker, Docker‑Compose, Python 3.10+, Node 18+, and Terraform (optional).
- Credentials – Access to cloud provider (AWS, GCP, Azure) or on‑prem infrastructure.
- Team – 1–2 data scientists, 1–2 security engineers, 1–2 analysts.
10.3 Infrastructure Setup
- Provision VMs – Use Terraform to spin up:
elastic-node(4 vCPU, 16 GB RAM)gpu-node(1 x NVIDIA T4, 8 GB VRAM)
- Networking – Create a private subnet; expose only necessary ports (5601 for Kibana, 9200 for Elasticsearch, 5000 for FastAPI).
- Security Groups – Restrict inbound traffic to internal IPs; enable TLS termination.
10.4 Elastic Stack Installation
# On elastic-node
sudo apt-get update && sudo apt-get install -y apt-transport-https openjdk-11-jre
wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.17.0-amd64.deb
sudo dpkg -i elasticsearch-7.17.0-amd64.deb
sudo systemctl enable elasticsearch && sudo systemctl start elasticsearch
# Install Kibana
wget https://artifacts.elastic.co/downloads/kibana/kibana-7.17.0-amd64.deb
sudo dpkg -i kibana-7.17.0-amd64.deb
sudo systemctl enable kibana && sudo systemctl start kibana
- Enable the SIEM app via Kibana UI.
- Configure Beats to ship logs to
elastic-node.
10.5 Wazuh Deployment
# On elastic-node
sudo apt-get install -y wazuh-manager
sudo systemctl enable wazuh-manager && sudo systemctl start wazuh-manager
# On each endpoint
sudo apt-get install -y wazuh-agent
sudo systemctl enable wazuh-agent && sudo systemctl start wazuh-agent
- Configure Wazuh to forward alerts to Elastic SIEM.
10.6 OpenCTI Setup
# On elastic-node
docker run -d --name opencti -p 8080:8080 opencti/platform:latest
# Create admin user via UI
- Import initial threat feeds (MISP, AlienVault).
- Expose the REST/TAXII API.
10.7 Model Training & Serving
- Data Preparation – Collect 3 months of logs, label a subset.
- Fine‑Tune Llama‑2 – Use Hugging Face
transformers.from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf") tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") # Fine‑tune on log summaries - Serve with FastAPI – Deploy on
gpu-node.from fastapi import FastAPI app = FastAPI() @app.post("/summarize") async def summarize(log: str): # Tokenize, generate, return summary - RL Playbook – Train Stable‑Baselines3 PPO policy.
from stable_baselines3 import PPO model = PPO("MlpPolicy", env, verbose=1) model.save("playbook_policy.zip") - Serve RL Policy – Expose via FastAPI.
10.8 Orchestration Layer
- Deploy a Flask app that receives alerts from Elastic SIEM, calls the LLM summarizer, queries OpenCTI, and invokes the RL policy.
- Use Celery for background tasks.
- Store audit logs in PostgreSQL.
10.9 Automation & CI/CD
- GitHub Actions – Build Docker images, run unit tests, and deploy to VMs.
- Ansible – Provision and configure services.
- Prometheus + Grafana – Monitor CPU, GPU, memory, and model latency.
10.10 Security Hardening
- Enable TLS for all services.
- Use HashiCorp Vault for secrets.
- Rotate API keys weekly.
- Run regular vulnerability scans with OpenVAS.
10.11 Maintenance Checklist
| Task | Frequency | Owner |
|---|---|---|
| Model Retraining | Monthly | Data Scientist |
| Log Retention Policy | Quarterly | Security Engineer |
| Compliance Audit | Annually | Compliance Officer |
| Infrastructure Scaling | As needed | DevOps |
| Incident Review | After each incident | Analyst |
10.12 Summary
By following this guide, a small security team can deploy a full AI‑powered security stack that delivers real‑time detection, automated response, and continuous improvement—all while staying within budget constraints.