Chapter 10 – Practical Implementation Guide

10.1 Overview

This chapter provides a step‑by‑step blueprint for building, deploying, and maintaining the AI‑powered security stack described in the book. It assumes a small security team (5–15 analysts) with basic DevOps skills.

10.2 Prerequisites

  • Hardware – At least one GPU‑enabled VM (e.g., NVIDIA T4) and one general‑purpose VM.
  • Software – Docker, Docker‑Compose, Python 3.10+, Node 18+, and Terraform (optional).
  • Credentials – Access to cloud provider (AWS, GCP, Azure) or on‑prem infrastructure.
  • Team – 1–2 data scientists, 1–2 security engineers, 1–2 analysts.

10.3 Infrastructure Setup

  1. Provision VMs – Use Terraform to spin up:
    • elastic-node (4 vCPU, 16 GB RAM)
    • gpu-node (1 x NVIDIA T4, 8 GB VRAM)
  2. Networking – Create a private subnet; expose only necessary ports (5601 for Kibana, 9200 for Elasticsearch, 5000 for FastAPI).
  3. Security Groups – Restrict inbound traffic to internal IPs; enable TLS termination.

10.4 Elastic Stack Installation

# On elastic-node
sudo apt-get update && sudo apt-get install -y apt-transport-https openjdk-11-jre
wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.17.0-amd64.deb
sudo dpkg -i elasticsearch-7.17.0-amd64.deb
sudo systemctl enable elasticsearch && sudo systemctl start elasticsearch

# Install Kibana
wget https://artifacts.elastic.co/downloads/kibana/kibana-7.17.0-amd64.deb
sudo dpkg -i kibana-7.17.0-amd64.deb
sudo systemctl enable kibana && sudo systemctl start kibana
  • Enable the SIEM app via Kibana UI.
  • Configure Beats to ship logs to elastic-node.

10.5 Wazuh Deployment

# On elastic-node
sudo apt-get install -y wazuh-manager
sudo systemctl enable wazuh-manager && sudo systemctl start wazuh-manager
# On each endpoint
sudo apt-get install -y wazuh-agent
sudo systemctl enable wazuh-agent && sudo systemctl start wazuh-agent
  • Configure Wazuh to forward alerts to Elastic SIEM.

10.6 OpenCTI Setup

# On elastic-node
docker run -d --name opencti -p 8080:8080 opencti/platform:latest
# Create admin user via UI
  • Import initial threat feeds (MISP, AlienVault).
  • Expose the REST/TAXII API.

10.7 Model Training & Serving

  1. Data Preparation – Collect 3 months of logs, label a subset.
  2. Fine‑Tune Llama‑2 – Use Hugging Face transformers.
    from transformers import AutoModelForCausalLM, AutoTokenizer
    model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
    tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
    # Fine‑tune on log summaries
    
  3. Serve with FastAPI – Deploy on gpu-node.
    from fastapi import FastAPI
    app = FastAPI()
    @app.post("/summarize")
    async def summarize(log: str):
        # Tokenize, generate, return summary
    
  4. RL Playbook – Train Stable‑Baselines3 PPO policy.
    from stable_baselines3 import PPO
    model = PPO("MlpPolicy", env, verbose=1)
    model.save("playbook_policy.zip")
    
  5. Serve RL Policy – Expose via FastAPI.

10.8 Orchestration Layer

  • Deploy a Flask app that receives alerts from Elastic SIEM, calls the LLM summarizer, queries OpenCTI, and invokes the RL policy.
  • Use Celery for background tasks.
  • Store audit logs in PostgreSQL.

10.9 Automation & CI/CD

  • GitHub Actions – Build Docker images, run unit tests, and deploy to VMs.
  • Ansible – Provision and configure services.
  • Prometheus + Grafana – Monitor CPU, GPU, memory, and model latency.

10.10 Security Hardening

  • Enable TLS for all services.
  • Use HashiCorp Vault for secrets.
  • Rotate API keys weekly.
  • Run regular vulnerability scans with OpenVAS.

10.11 Maintenance Checklist

Task Frequency Owner
Model Retraining Monthly Data Scientist
Log Retention Policy Quarterly Security Engineer
Compliance Audit Annually Compliance Officer
Infrastructure Scaling As needed DevOps
Incident Review After each incident Analyst

10.12 Summary

By following this guide, a small security team can deploy a full AI‑powered security stack that delivers real‑time detection, automated response, and continuous improvement—all while staying within budget constraints.